Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Chromatogr A ; 1691: 463816, 2023 Feb 22.
Article in English | MEDLINE | ID: covidwho-2177471

ABSTRACT

The anti-epidemic sachet (Fang Yi Xiang Nang, FYXN) in traditional Chinese medicine (TCM) can prevent COVID-19 through volatile compounds that can play the role of fragrant and dampness, heat-clearing and detoxifying, warding off filth and pathogenic factors. Nevertheless, the anti-(mutant) SARS-CoV-2 compounds and the compounds related to the mechanism in vivo, and the mechanism of FYXN are still vague. In this study, the volatile compound set of FYXN was constructed by gas chromatography-mass spectrometry (GC-MS) based on multiple sample preparation methods, which include headspace (HS), headspace solid phase microextraction (HS-SPME) and pressurized liquid extraction (PLE). In addition, selective ion analysis (SIA) was used to resolve embedded chromatographic peaks present in HS-SPME results. Preliminary analysis of active compounds and mechanism of FYXN by network pharmacology combined with disease pathway information based on GC-MS results. A total of 96 volatile compounds in FYXN were collected by GC-MS analysis. 39 potential anti-viral compounds were screened by molecular docking. 13 key pathways were obtained by KEGG pathway analysis (PI3K-Akt signaling pathway, HIF-1 signaling pathway, etc.) for FYXN to prevent COVID-19. 16 anti-viral compounds (C95, C91, etc.), 10 core targets (RELA, MAPK1, etc.), and 16 key compounds related to the mechanism in vivo (C56, C30, etc.) were obtained by network analysis. The relevant pharmacological effects of key pathways and key compounds were verified by the literature. Finally, molecular docking was used to verify the relationship between core targets and key compounds, which are related to the mechanism in vivo. A variety of sample preparation methods coupled with GC-MS analysis combined with an embedded peaks resolution method and integrated with network pharmacology can not only comprehensively characterize the volatile compounds in FYXN, but also expand the network pharmacology research ideas, and help to discover the active compounds and mechanisms in FYXN.


Subject(s)
COVID-19 , Volatile Organic Compounds , Humans , Gas Chromatography-Mass Spectrometry/methods , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , SARS-CoV-2 , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis
2.
Int J Environ Res Public Health ; 19(13)2022 06 25.
Article in English | MEDLINE | ID: covidwho-1934043

ABSTRACT

This study aims to examine the relationship between diet quality and health outcomes among children in rural remote areas of China. We draw on a cross-sectional dataset of 1216 children from two counties in the Gansu Province in Northwest China. Child health outcomes were assessed with both anthropometric measurements and reports by primary caregivers of the children. Child diet quality was assessed with the diet quality score (DQS) using information from a food frequency questionnaire (FFQ). Our data show the prevalence of stunting and underweight among sample children were 12% and 11%, respectively; 27% of children were reported by their caregivers as unhealthy, and 60% of children had at least one of the seventeen selected non-communicable diseases (NCDs) over the past 14 days. Overall, 780 (72%) children have at least one of the four above-mentioned health problems. Results from logistic regression models show that a higher DQS was significantly associated with a lower likelihood of being stunted and a higher likelihood of being reported healthy after adjusting for confounders. These findings imply that improving child diet quality might be an option when designing interventions to improve child health.


Subject(s)
Diet , Growth Disorders , Child , China/epidemiology , Cross-Sectional Studies , Growth Disorders/epidemiology , Humans , Infant , Outcome Assessment, Health Care , Prevalence , Rural Health , Rural Population
3.
Chin Med ; 17(1): 84, 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1923561

ABSTRACT

BACKGROUND: Lianhua Qingwen Capsules (LHQW) is a traditional Chinese medicine prescription commonly used to treat viral influenza in China. There has been sufficient evidence that LHQW could effectively treat COVID-19. Nevertheless, the potential anti-(mutant) SARS-CoV-2 and anti-inflammation compounds in LHQW are still vague. METHODS: The compounds of LHQW and targets were collected from TCMSP, TCMID, Shanghai Institute of Organic Chemistry of CAS database, and relevant literature. Autodock Vina was used to carry out molecular docking. The pkCSM platform to predict the relevant parameters of compound absorption in vivo. The protein-protein interaction (PPI) network was constructed by the STRING database. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was carried out by Database for Annotation, Visualization, and Integrated Discovery (DAVID). The anti-(mutant) SARS-CoV-2 and anti-inflammation networks were constructed on the Cytoscape platform. RESULTS: 280 compounds, 16 targets related to SARS-CoV-2, and 54 targets related to cytokine storm were obtained by screening. The key pathways Toll-like receptor signaling, NOD-like receptor signal pathway, and Jak-STAT signaling pathway, and the core targets IL6 were obtained by PPI network and KEGG pathway enrichment analysis. The network analysis predicted and discussed the 16 main anti-SARS-CoV-2 active compounds and 12 main anti-inflammation active compounds. Ochnaflavone and Hypericin are potential anti-mutant virus compounds in LHQW. CONCLUSIONS: In summary, this study explored the potential anti-(mutant) SARS-CoV-2 and anti-inflammation compounds of LHQW against COVID-19, which can provide new ideas and valuable references for discovering active compounds in the treatment of COVID-19.

4.
Risk Manag Healthc Policy ; 14: 595-604, 2021.
Article in English | MEDLINE | ID: covidwho-1143347

ABSTRACT

BACKGROUND: Considering the current situation of the novel coronavirus disease (COVID-19) epidemic control, it is highly likely that COVID-19 and influenza may coincide during the approaching winter season. However, there is no available tool that can rapidly and precisely distinguish between these two diseases in the absence of laboratory evidence of specific pathogens. METHODS: Laboratory-confirmed COVID-19 and influenza patients between December 1, 2019 and February 29, 2020, from Zhongnan Hospital of Wuhan University (ZHWU) and Wuhan No.1 Hospital (WNH) located in Wuhan, China, were included for analysis. A machine learning-based decision model was developed using the XGBoost algorithms. RESULTS: Data of 357 COVID-19 and 1893 influenza patients from ZHWU were split into a training and a testing set in the ratio 7:3, while the dataset from WNH (308 COVID-19 and 312 influenza patients) was preserved for an external test. Model-based decision tree selected age, serum high-sensitivity C-reactive protein and circulating monocytes as meaningful indicators for classifying COVID-19 and influenza cases. In the training, testing and external sets, the model achieved good performance in identifying COVID-19 from influenza cases with a corresponding area under the receiver operating characteristic curve (AUC) of 0.94 (95% CI 0.93, 0.96), 0.93 (95% CI 0.90, 0.96), and 0.84 (95% CI: 0.81, 0.87), respectively. CONCLUSION: Machine learning provides a tool that can rapidly and accurately distinguish between COVID-19 and influenza cases. This finding would be particularly useful in regions with massive co-occurrences of COVID-19 and influenza cases while limited resources for laboratory testing of specific pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL